
NUMERICAL ANALYSIS OF SCATTERING BY INTERFACE FLAWS

Yonglin Xu and J. D. Achenbach

Center for Quality Engineering and Failure Prevention
Northwestern University
Evanston, IL 60208-3020

D T IC Office of Naval ResearchELECTES E LC00014-89 J-1362SEP 2 9 1989 U

August 15, 1989

NU-Center QEFP-89-1

Approved for public release; distribution unlimited

89 9 29 068



NUMERICAL ANALYSIS OF SCATTERING BY INTERFACE FLAWS

Yonglin Xu and Jan D. Achenbach
Center for Quality Engineering and Failure Prevention
Northwestern University
Evanston, IL 60208, USA

INTRODUCTION

Scattering by inhomogeneities in homogeneous media can be analyzed in an elegant
manner by reducing the problem statement to the solution of a system of singular integral
equations over the surface of the scatterer [1]. This system can be solved in a relatively straight
forward manner by the use of the boundary element method [2]. An inhomogeneity in an
interface between two solids of different mechanical properties presents some additional
complications to the numerical analyst. These complications are discussed in this paper. In
deriving the system of singular integral equations, it was decided to use the Green's ft nctions
for the unbounded regions of the two materials, rather than the single Green's function for the
space of the joined half spaces. This approach introduces a considerable simplification in the
integrands, but at the expense of the addition of a set of boundary integral equations over the
interface between the two solids, outside of the inhomogeneity. In the boundary element
approach the domain of these equations has to be truncated. Specific results are presented for
backscattering by a spherical cavity in the interface of solids of different elastic mcduli and mass
densities.

PROBLEM FORMULATION

The interface of two elastic solids of different mechanical properties, which is defined by
x3 = 0, intersects a cavity of arbitrary shape. The origin of the coordinate system is placed in the
intersection of the cavity and the interface. The geometry is shown in Fig. 1.

Steady-state time-harmonic fields are considered in this paper. The time harmonic term
exp(-iot), where co is the angular frequency will, however, be omitted. To distinguish the fields
in the upper half-space from those in the lower half-space we use the following notation

X3 <0: u(x), t(x), CL, CO; x3 >0: i(x), x), , CT

1//2

Here u(x) and t (x) define the total displacement and traction fields,while cL ={ ((+2g)/p}12

CT= {g/p }1/2 are the velocities of longitudinal and transverse waves, respectively.
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Fig. 1. Cavity in an interface of materials with different mechanical properties.

The surface of the cavity is free of tractions. The surface of the cavity in the upper half-

space is denoted by S, while S denotes the surface of the cavity in the lower half-space. Thus
we have

x'ES: Ti =-ij nj=O and xe S: ti =rij nj=O (la,b)

where rij denotes the stress tensor, and n and n are unit vectors normal to S and S,

respectively. Tractions and displacements are continuous across the interface outside the cavity,
which is denoted by F. Thus,

x F: 3i 3i' i = ui (2a,b)

The incident longitudinal wave in the half-space x3 < 0 is of the general form

in din in

u =Ad exp(ikl p .x) (3)

where
din ininn

d i p i (sine m, 0, cos8i ) (4a,b)

If there were no cavity, the incident wave would give rise to reflected and transmitted
longitudinal and transverse waves:
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reflected: ua - RaA da exp( ik po. x) (5)

transmitted: Ua= T aA da exp( ik L. x) (6)

Here a = L for longitudinal waves and a = T for transverse waves. The angle of incidence and
the angles of reflection and transmission, as well as the unit vectors d and p are shown in

Fig.2. The (geometrical) fields are

x3< 0: Ax) =un(x) + u (x) + uk x) (7)

3x3 >0: - x)= u~) W + (x8_ ,)

The computation of the reflection and transmission coefficients has been discussed

elsewhere, see e.g. [3]. Briefly stated, the application of the continuity conditions (2a,b) over

the plane x3 = 0 yields relations between the angles 0a, bcc, and 0i n (Snell's law), as well as

a set of four linear algebraic equations for Ra and Ta. The latter equations can be solved for

Ra and TaX to yield lengthy expressions, which are not reproduced here. For the special case
of normal incidence ( in =0) we have, however, the simple forms

X3  .T
-Pd

L* P

-T
0

pX,
Fi. . rpaatonvctrso pan wvs efTe dtrnmtdbyheiefa.
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PCL " PCL 2 pcLRL  , TL=--  (9a,b)

PCL + PCL PCL + PCL

The presence of the cavity perturbs the system of incident, reflected and transmitted

fields by the generation of scattered fields u ( x) and us( x). Thus, the total fields become

X3 <0: u(x)= ux) + us(x); x3 > 0 : ii(x)= -u x) + _u (x) (10a,b)

Clearly the scattered field must satisfy the continuity conditions (2a,b) on F, while on
the surface of the cavity we must have

xc S: i and xe S: 9laix j = T ij nj=- j nj (lla,b)

In addition the scattered fields in the two half-spaces must satisfy radiation conditions
and regularity conditions as lxi -oo

INTEGRAL REPRESENTATIONS FOR JOINED SOLIDS

The representation of an elastodynamic displacement field in terms of integrals over
surfaces bounding a domain, is well known, see e.g. Ref.[4]. In the present problem we will
consider four domains: the domain inside the cavity in the lower half-space (V), the lower half-
space excluding the domain of the cavity (L-V), the domain inside the cavity in the upper half-

space (V) and the upper half-space excluding the domain of the cavity (L-V). For the scattering
problem that is being considered in this paper, The scattered displacement field in L-V may then
written as

C u(x)= [Uij(xy)t(y)- Tij(x,)u (Y) ]dS(y) (12)
s+r. - ~ -

where the notation F. indicates that F is approached from x3 < 0, and C = 0 for xe L+V,
1

C = I for x e L-V and C = - for xc S+ F . In Eq.(12), U. (x,y) is the fundamental2solution.

Due to space limitations the detailed derivation of the system of integral equations will

be given elsewhere [5]. Here we simply state the following system of equations:

xe S:

u -f T ujdS -fT ujdS + f [(U..-. )tj -(T..-T )uj]dSu ij Tiji uj 1 i
S
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- f [(U.. -U. )t-(T j-T..)u dS + ujg  (13)r+r0 j

XE S"

12 ui  -Tij udS-j j dS +f+ [(!ij- U.. ) j -(Tij -Tij jdS

SS

- f [(U..-U.. ) t - (T- Ti )uf]dS + -g  (14)
0 IJ 1J ij j j1F++F'+

xe F

u= -J Ti ujdS+ f [U.. tj - Tiju j ldS - J [U..tg-T..ugldS+!u i

S F i. F+ F ij j ij J 2 1

(15)

f -TijujdS + f [Uij tj -Tu.]dS- J [U t'Tiug]dS +2u 'g

2 ij i iji+ iji J i ji ij2
S

(16)

In addition the fields on the interface F must satisfy the interface conditions (2a,b).

NUMERICAL RESULTS

For the case that the cavity is a sphere of radius a, solutions of the systems of

boundary integral equations have been obtained by the use of the boundary element method.

For S and S this was achieved by replacing circles in the plane rotating about the x3 - axis by

polygons with 16 (%d < 0.6) or 20 (kLd > 0.6) sides, as shown in Fig. 3a. Circles in planes

normal to the x3 - axis were maintained as circles, and 12 elements were taken along each

circumference. The interface, F + r0 , is divided into annular elements, as shown in Fig. 3b.

The unbounded area F was however replaced by a bounded area Fb , whose outer boundary

was defined by a circle of radius b. For x3 = 0, r > b, uS(0,0,x3 ) was assumed to be

negligible as compared to u0,0, x3 ), In other words the radius r = b was selected such that

that the contribution of integrals of the form
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Fig.3(a).Polygon representation of curves rotating about x3-axis. (b) Elements in the interface

[( U..- )t -(T.-T..)u,%dS (17)
iJ ii J i iJ i J i

r-rb

are negligible. For kL d < 0.6, b/a was taken as b/a = 11, and 12 x 11 elements were used for

rb + 170 .For kL d > 0.6, b/a =15, and 12 x 15 elements were used for the region. The
fields were taken as constants over all elements.

The singular parts of the integrands have been dealt with as described in some detail in
Ref.[2]. Thus, the Green's function tractions have been split in singular and nonsingular
parts. The singular parts are just the same as the displacements and tractions corresponding to
static loading, and they are computed as in the boundary element method for static problems.
The dynamic deviations are not singular, and they may be expanded in a series. Usually a small
number of terms in the expansions suffice for satisfactory results.

Specific results have been obtained for an incident wave of the form (3). It should be
noted that the system of transmitted waves represented by Eq.(8) does not always consist of a
system of homogeneous plane propagating waves. There is a critical angle of incidence, whose
magnitude depends on the material properties of the two half-spaces. For incidence of a
longitudinal wave at the critical angle the transmitted longitudinal wave grazes the interface, and
for incidence beyond the critical angle the transmitted longitudinal wave also propagates along
the interface, but with an amplitude which decays with distance to the interface. Details of these
phenomena can be found in Refs. [6] and [7]. The method of this paper remains, however,
valid, independent of the nature of the transmitted wave.

An interface between two solids of different mechanical properties may give rise to
Stoneley waves, i.e., surface waves whose amplitudes decay exponentially with distance from
the interface in both materials. Stoneley waves with real-valued wavenumbers occur only
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Fig. 4. Absolute values of ratios of amplitudes of the backscattered and the incident fields
for two-material case (2-M) and one-material case.

within a limited range of material properties of the two materials. A discussion of the existence
of Stonely waves is given in Ref. [8].

Calculations have been carried out for three combinations of the material properties of
the two half-spaces. The first case considered concerns materials defined by

v = 0.29, i =0.46, / p =1.19, .L/c, =1.69

For normal incidence and a spherical cavity, the curve marked 2-M of Fig.4 shows the ratio of
the amplitudes of the scattered field and the incident wave at the position defined by coordinates
(0,0,- 16). It is noted that the ratio tends to be quite small, at least at small frequencies. This
ratio may be compared with the reflection coefficient given by Eq.(9a) for direct reflection by
the interface. The reflection coefficient is R = 0.335. Thus the backscattered wave will be very
difficult to distinguish from the reflected field. This observation suggests that a more viable
method for detection and characterization of interface voids is by the case of oblique incidence.
Oblique incidence was considered for a second combination of material properties:

v = 0.25, =0.23, p / p = 0.83, CL/Ct =1.1 3

Figure.5 shows the x1 and x3 components of the amplitude ratio of the backscattered field and
the incident field for an angle of incidence a = 300, at the point of observation 20 units
removed from the center of the cavity. The backscattered field will now not compete with a
specular reflection, and hence more useful results can be extracted from curves of the type
shown in Fig5.

It is also of interest to compare backscattered results for the 2 - material and 1 - material
cases, where the 1- material case is the one for the lower half space . For normal incidence, a
comparison is included in Fig.4. For a third combination of material properties

v = 0.25, =0.25, p / p = 0.8, 'k/CL =1.25,

results are shown in Fig.6. It is noted that significant differences due to the presence of the
interface occure only at higher frequencies. The difference are very small for Fig.6, because the
two materials have the same mechanical impedance, and the reflection coefficient defined by
Eq.(9a) actually equals zero.
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Fig. 5. Amplitude ratios of backscattered displacements in x I and x3 directions for oblique
incidence
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Fig. 6. Ratios of amplitudes of the backscattered and the incident fields for two-material
case (2-M) and one material case(l-M).
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functions for .ie unbounded regions of the two materials, rather than the single
Green's fut, ion for the space of the joined half spaces. This approach introduces
a consileiable simplification in the integrands, but at the expense of the addition
of a set of boundary integral equations over the interface between the two solids,
outside of the inhomogeneity. In the toundary element approach the domain of these
equations has to be truncated. Specific results are presented for backscattering
by a spherical cavity in the interface of solids of different elastic moduli and
mass densities.


